Upsolver
Contact Support
  • Welcome to Upsolver
  • Getting Started
    • Start using Upsolver for free
    • Get started as a Upsolver user
      • Upsolver in 5 minutes
        • Upsolver Quickstart in 5 minutes
          • Additional sandbox fun
        • Amazon Athena data output
        • MySQL (AWS RDS) data output
        • Local MySQL data output
      • Upsolver free training
        • Introduction to Upsolver
          • Transform and write data to Amazon Athena
          • Pre-aggregate data for efficiency and performance
          • UPSERT streaming data to Amazon Athena
      • Prerequisites for AWS deployment
      • AWS integration
      • Deploy Upsolver on your AWS account
      • Prerequisites for Azure Deployment
      • Azure Integration
        • Prerequisites for Azure Users
        • Log into Upsolver
        • Log into Azure & Authenticate
        • Set Up and Deploy Azure Resources
        • Delegate Resource Group, and Deploy Upsolver in Azure
        • Integrate Azure with Upsolver
    • Upsolver concepts
      • Deployment models
      • Upsolver components
      • Data ingestion
    • Upsolver Amazon AWS deployment guide
      • Private VPC
      • Upsolver VPC
      • AWS role permissions
      • VPC peering
    • Tutorials and FAQ
      • Tutorials
        • How To Re-process Data
        • Create an Amazon S3 data source
        • Create an Amazon Athena data output
        • Join multiple data streams for real-time analytics
        • Use Upsolver to index less data into Splunk
        • Upsert and delete use case
        • AWS S3 to Athena use case
        • Merge data use case
        • Full vs. Partial Inbound Data Records
      • FAQ
      • Infrastructure
        • What is a dry-run cluster?
    • Glossary
      • Language guide
        • SQL syntax reference
        • Functions
          • Aggregation Functions
            • APPROX_COUNT_DISTINCT
            • APPROX_COUNT_DISTINCT_EACH
            • AVG
            • AVG_EACH
            • AVG_TIME_SERIES
            • COLLECT_SET
            • COLLECT_SET_EACH
            • COUNT
            • COUNT(*)
            • COUNT_DISTINCT
            • COUNT_EACH
            • COUNT_IF
            • DECAYED_SUM
            • DYNAMIC_SESSIONS
            • FIRST
            • FIRST_ARRAY
            • FIRST_EACH
            • FIRST_TIME_SERIES
            • LAST
            • LAST_ARRAY
            • LAST_EACH
            • LAST_K
            • LAST_K_EACH
            • LAST_TIME_SERIES
            • MAX
            • MAX_BY
            • MAX_EACH
            • MAX_TIME_SERIES
            • MIN
            • MIN_BY
            • MIN_EACH
            • MIN_TIME_SERIES
            • SESSION_COUNT
            • STD_DEV
            • STD_DEV_EACH
            • STRING_MAX_EACH
            • STRING_MIN_EACH
            • SUM
            • SUM_EACH
            • SUM_TIME_SERIES
            • WEIGHTED_AVERAGE
          • Calculated functions
            • Aerospike functions
            • Array functions
            • Conditional functions
            • Date functions
            • External API functions
            • Filter functions
            • Numeric functions
            • Spatial functions
            • String functions
            • Structural functions
              • ZIP
            • Type conversion functions
      • Data formats
      • Data types and features
      • Database output options
      • Upsolver shards
      • Permissions list
      • Index
    • Troubleshooting
      • My CloudFormation stack failed to deploy
      • My private API doesn't start or I can't connect to it
        • Elastic IPs limit reached
        • EC2 Spot Instance not running
        • DNS cache
        • Security group not open
      • My compute cluster doesn't start
      • I can't connect to my Kafka cluster
      • I can't create an S3 data source
      • Data doesn't appear in Athena table
      • I get an exception when querying my Athena table
      • Unable to define a JDBC (Postgres) connection
  • Connecting data sources
    • Amazon AWS data sources
      • Amazon S3 data source
        • Quick guide: S3 data source
        • Full guide: S3 data source
      • Amazon Kinesis Stream data source
      • Amazon S3 over SQS data source
      • Amazon AppFlow data source
        • Setup Google Analytics client ID and client secret.
    • Microsoft Azure data sources
      • Azure Blob storage data source
      • Azure Event Hubs data source
    • Kafka data source
    • Google Cloud Storage data source
    • File upload data source
    • CDC data sources (Debezium)
      • MySQL CDC data source
        • Binlog retention in MySQL
      • PostgreSQL CDC database replication
    • JDBC data source
    • HDFS data source
    • Data source UI
    • Data source properties
  • Data outputs and data transformation
    • Data outputs
      • Amazon AWS data outputs
        • Amazon S3 data output
        • Amazon Athena data output
          • Quick guide: Athena data output
          • Full guide: Athena data output
          • Output all data source fields to Amazon Athena
        • Amazon Kinesis data output
        • Amazon Redshift data output
        • Amazon Redshift Spectrum data output
          • Connect Redshift Spectrum to Glue Data Catalog
        • Amazon SageMaker data output
      • Data lake / database data outputs
        • Snowflake data output
          • Upsert data to Snowflake
        • MySQL data output
        • PostgreSQL data output
        • Microsoft SQL Server data output
        • Elasticsearch data output
        • Dremio
        • PrestoDB
      • Upsolver data output
      • HDFS data output
      • Google Storage data output
      • Microsoft Azure Storage data output
      • Qubole data output
      • Lookup table data output
        • Lookup table alias
        • API Playground
        • Serialization of EACH aggregations
      • Kafka data output
    • Data transformation
      • Transform with SQL
        • Mapping data to a desired schema
        • Transforming data with SQL
        • Aggregate streaming data
        • Query hierarchical data
      • Work with Arrays
      • View outputs
      • Create an output
        • Modify an output in SQL
          • Quick guide: SQL data transformation
        • Add calculated fields
        • Add filters
        • Add lookups
          • Add lookups from data sources
          • Add lookups from lookup tables
          • Adding lookups from reference data
        • Output properties
          • General output properties
      • Run an output
      • Edit an output
      • Duplicate an output
      • Stop an output
      • Delete an output
  • Guide for developers
    • Upsolver REST API
      • Create a data source
      • Modify a data source
      • API content formats
    • CI/CD on Upsolver
  • Administration
    • Connections
      • Amazon S3 connection
      • Amazon Kinesis connection
      • Amazon Redshift connection
      • Amazon Athena connection
      • Amazon S3 over SQS connection
      • Google Storage connection
      • Azure Blob storage connection
      • Snowflake connection
      • MySQL connection
      • Elasticsearch connection
      • HDFS connection
      • Qubole connection
      • PostgreSQL connection
      • Microsoft SQL Server connection
      • Spotinst Private VPC connection
      • Kafka connection
    • Clusters
      • Cluster types
        • Compute cluster
        • Query cluster
        • Local API cluster
      • Monitoring clusters
      • Cluster tasks
      • Cluster Elastic IPs
      • Cluster properties
      • Uploading user-provided certificates
    • Python UDF
    • Reference data
    • Workspaces
    • Monitoring
      • Credits
      • Delays In Upsolver pipelines
      • Monitoring reports
        • Monitoring system properties
        • Monitoring metrics
    • Security
      • IAM: Identity and access management
        • Manage users
        • Manage groups
        • Manage policies
      • Git integration
      • Single sign-on with SAML
        • Microsoft Azure AD with SAML sign-on
        • Okta with SAML sign-on
        • OneLogin with SAML sign-on
      • AMI security updates
  • Support
    • Upsolver support portal
  • Change log
  • Legal
Powered by GitBook
On this page

Was this helpful?

  1. Data outputs and data transformation
  2. Data transformation

Edit an output

This article provides a guide on how to edit an output in Upsolver.

PreviousRun an outputNextDuplicate an output

Last updated 4 years ago

Was this helpful?

In order to ensure data lineage, once you run an output it becomes immutable (as it is a production task). However, you can still edit the output, but it does not stop it from running.

Changes to the output are saved automatically and the edited output is still the same logical output (effectively equivalent to a new version of an existing output).

The output appears in Draft mode while it is being edited and it appears as a separate tile in the Outputs page.

A suffix _<Number> is added to the ID of the output to indicate that it is a new version of the output.

Once you have edited the output, you can duplicate, discard, or run the edited output.

When you run the edited output, you can choose:

  • To alter the existing table and write to a different location in the existing output data table, making it possible to identify which files were created by which version of the output.

  • Create a new table. This is equivalent to duplicating the output. The existing table and output are not affected in any way by this operation.

Note: You can only edit the contents of a new lookup table that has not yet run.

Once a lookup table has run, you cannot edit the lookup table. Instead duplicate the lookup table and edit the copy.

Edit an output

1. From the Outputs page, select the output you wish to edit.

2. Click Edit.

3. Edit the output as required.

4. Click one of the following options:

Abandons the edited output.

Duplicates the edited output.

Runs the edited output.

To run the output:

  1. Select whether to Alter Existing Table or Create New Table.

  2. Click Next.

If you selected Create New Table:

  • The Duplicate Output window will appear.

  • This is equivalent to duplicating the output.

  • See:

If you selected Alter Existing Table:

  • The Run window will appear.

  • Select the Compute Cluster and select the Processing Time Range.

  • The original output finishes running at the time when the new edited output starts running.

  • The data from the new version of the output is located in a separate folder.

  • If you select a date and time in the past, any data stored after that date by the original output is deleted, and the new output processes the data from that point in time onwards.

  • The original and new locations are transparent to the user.

Duplicating an output