Quick guide: SQL data transformation

This article provides a quick video tutorial on SQL data transformation in Upsolver and also includes a corresponding written guide.

Before starting to transform your data, you must have already deployed Upsolver and created a data source.

Upsolver’s SQL transformation on data streams removes the complexity from traditional data pipeline transformations and orchestrations.

Upsolver SQL is ANSI SQL compliant, so you don’t have to learn any special syntax to get started; it is intuitive and easy to use for anyone with basic SQL knowledge. Users write regular SQL expressions with extensions for streaming data use cases such as window aggregations, and the Upsolver engine will continuously execute the queries.

Let’s get started.

Create an AWS Athena data output

1. Click on Outputs on the left and then New on the right upper corner.

2. Select Amazon Athena as the data output.

3. Give the data output a name and select your data sources; then click Next.

Data transformation using SQL

Keep in mind that everything written in SQL will be automatically translated in the UI and everything changed in the UI will be reflected in SQL.

2. Use TO_DATE function to parse out the YEAR() and MONTH() from the DATE STRING.

3. Use TO_NUMBER to convert STRING to NUMBER for calculation.

4. Use || to concatenate values from two fields together.

5. Click Preview to ensure that your data looks correct.

6. Click Run and input your AWS Athena information.

Configure AWS Athena run parameter and data output information

1. Enter the S3 Storage that the Athena table will be utilizing, then enter in the Connection, Database, and Table information for your target Athena environment. Click Next.

2. Enter the run parameters for your data set. Pick the compute cluster you wish to utilize and the time interval for the data to be loaded to Athena. Click Deploy.

3. Monitor Current Status and wait until the data competes loading.

Verify loaded data from AWS Athena

1. In your Athena environment, make sure the table is created correctly and data types are as expected.

2. Run a simple Select query to make sure the data loaded to Athena correctly.

What’s next?

Last updated