LogoLogo
OverviewQuickstartsHow To GuidesReferenceArticlesSupport
How To Guides
How To Guides
  • How To Guides
  • SETUP
    • Deploy Upsolver on AWS
      • Deployment Guide
      • AWS Role Permissions
      • VPC Peering Guide
      • Role-Based AWS Credentials
    • Enable API Integration
    • Install the Upsolver CLI
  • CONNECTORS
    • Create Connections
      • Amazon Kinesis
      • Amazon Redshift
      • Amazon S3
      • Apache Kafka
      • AWS Glue Data Catalog
      • ClickHouse
      • Confluent Cloud
      • Elasticsearch
      • Microsoft SQL Server
      • MongoDB
      • MySQL
      • PostgreSQL
      • Snowflake
      • Tabular
    • Configure Access
      • Amazon Kinesis
      • Amazon S3
      • Apache Kafka
      • AWS Glue Data Catalog
      • Confluent Kafka
    • Enable CDC
      • Microsoft SQL Server
      • MongoDB
      • MySQL
      • PostgreSQL
  • JOBS
    • Basics
      • Real-time Data Ingestion — Amazon Kinesis to ClickHouse
      • Real-time Data Ingestion — Amazon S3 to Amazon Athena
      • Real-time Data Ingestion — Apache Kafka to Amazon Athena
      • Real-time Data Ingestion — Apache Kafka to Snowflake
    • Advanced Use Cases
      • Build a Data Lakehouse
      • Enriching Data - Amazon S3 to ClickHouse
      • Joining Data — Amazon S3 to Amazon Athena
      • Upserting Data — Amazon S3 to Amazon Athena
      • Aggregating Data — Amazon S3 to Amazon Athena
      • Managing Data Quality - Ingesting Data with Expectations
    • Database Replication
      • Replicate CDC Data into Snowflake
      • Replicate CDC Data to Multiple Targets in Snowflake
      • Ingest Your Microsoft SQL Server CDC Data to Snowflake
      • Ingest Your MongoDB CDC Data to Snowflake
      • Handle PostgreSQL TOAST Values
    • VPC Flow Logs
      • Data Ingestion — VPC Flow Logs
      • Data Analytics — VPC Flow Logs
    • Job Monitoring
      • Export Metrics to a Third-Party System
    • Data Observability
      • Observe Data with Datasets
  • DATA
    • Query Upsolver Iceberg Tables from Snowflake
  • APACHE ICEBERG
    • Analyze Your Iceberg Tables Using the Upsolver CLI
    • Optimize Your Iceberg Tables
Powered by GitBook
On this page
  • Create a MongoDB connection
  • Alter a MongoDB connection
  • Drop a MongoDB connection
  1. CONNECTORS
  2. Create Connections

MongoDB

This page describes how to create and maintain connections to your MongoDB database.

Last updated 11 months ago

Before ingesting your data from MongoDB, you must establish a connection to your database.

Please read the documentation for further information.

Create a MongoDB connection

Simple example

A MongoDB connection can be created as follows:

CREATE MONGODB CONNECTION my_mongodb_connection
  CONNECTION_STRING = 'mongodb+srv://cluster0.example.mongodb.net/testdb1'
  USER_NAME = '<user_name>'
  PASSWORD = '<password>';

Alter a MongoDB connection

Some connection options are considered mutable, meaning that in some cases, you can run a SQL command to alter an existing MongoDB connection rather than create a new one.

To change the database you are connecting to but keep everything else the same without having to create an entirely new connection, you can run the following command:

ALTER MONGODB CONNECTION my_mongodb_connection
    SET CONNECTION_STRING = 'mongodb+srv://cluster0.example.mongodb.net/testdb2'

Drop a MongoDB connection

If you no longer need a connection you can easily drop it with the following SQL command:

DROP CONNECTION my_mongodb_connection;

However, note that if existing tables or jobs depend upon the connection, the connection cannot be dropped.


Learn More

To discover which connection options are mutable, and to learn more about the options, please see the SQL command reference for .

Connection String URI Format
MongoDB